Chapter 3 – Making Light Work in Biology  109

lenses of focal lengths 50 mm and 200 mm, which images onto a CMOS camera with

pixel size 20 µm. 3D fluorescence imaging suggested that the width of the nucleoid

was 0.48 µm. If a fluorescently tagged DNA binding protein bound transiently to the

“bottom” region of the nucleoid closest to the coverslip but then diffused through the

nucleoid and subsequently emerged from the ‘top’ nucleoid region furthest away in

right from the coverslip, would you be able to track the protein for the entirety of this

journey? (see Worked Case Example 8.4 for a related question.)

REFERENCES

KEY REFERENCE

Axelrod, D. et al. (1984). Total internal reflection fluorescence. Annu. Rev. Biophys. Bioeng.

13:247–​268.

MORE NICHE REFERENCES

Allen, K.N., and Imperiali, B. (2010). Lanthanide-​tagged proteins—​An illuminating partnership. Curr.

Opin. Chem. Biol. 14:247–​254.

Corry, B. et al. (2006). Determination of the orientational distribution and orientation factor for

transfer between membrane-​bound fluorophores using a confocal microscope. Biophys. J.

91(3):1032–​1045.

Fara, P. (2009). A microscopic reality tale. Nature 459:642–​644.

Hinterdorfer, P. et al. (1994). Reconstitution of membrane fusion sites. A total internal reflection

fluorescence microscopy study of influenza hemagglutinin-​mediated membrane fusion. J. Biol.

Chem. 269:20360–​20368.

Hooke, R. (1665). Micrographia: Or Some Physiological Descriptions of Minute Bodies Made by

Magnifying Glasses with Observations and Inquiries Thereupon. Royal Society, London, U.K.

Scanned manuscript from 1754 available at http://​lhl​digi​tal.lindah​all.org/​cdm/​ref/​col​lect​ion/​

nat_​h​ist/​id/​0.

Hughes, B.D., Pailthorpe, B.A., and White, L.R. (1981). The translational and rotational drag on a

cylinder moving in a membrane. J. Fluid. Mech. 110:349–​372.

Kuimova, M.K. et al. (2008). Molecular rotor measures viscosity of live cells via fluorescence lifetime

imaging. J. Am. Chem. Soc. 130(21):6672–​6673.

Marriott, G. et al. (2008). Optical lock-​in detection imaging microscopy for contrast-​enhanced

imaging in living cells. Proc. Natl. Acad. Sci. USA 105:17789–​17794.

Michalet, X. et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science

307:538–​544.

Nasse, M.J. et al. (2011). High-​resolution Fourier-​transform infrared chemical imaging with multiple

synchrotron beams. Nat. Methods 8:413–​416.

Piston, D.W. (2010). Fluorescence anisotropy of protein complexes in living cells. Biophys. J.

99(6):1685–​1686.

Planchon, T.A. et al. (2011). Rapid three-​dimensional isotropic imaging of living cells using Bessel

beam plane illumination. Nat. Methods 8:417–​423.

Popescu, G. (2011) Quantitative Phase Imaging of Cells and Tissues, McGraw-​Hill, New York.

Saffman, P.G. and Delbrück, M. (1975). Brownian motion in biological membranes. Proc. Natl. Acad.

Sci. USA 72(8):3111–​3113.

Sako, Y. et al. (2000). Single-​molecule imaging of EGFR signalling on the surface of living cells. Nat.

Cell Biol. 2:168–​172.

Schmidt, T. et al. (1996). Imaging of single molecule diffusion. Proc. Natl. Acad. Sci. USA 93:2926–​2929.

Self, S.A. (1983). Focusing of spherical Gaussian beams. Appl. Opt. 22:658–​661.

Sund, S.E. et al. (1999). Cell membrane orientation visualized by polarized total internal reflection

fluorescence. Biophys. J. 77:2266–​2283.